
Applying the SCR Requirements Method to the

Light Control Case Study
Journal of Universal Computer Science (JUCS), August 2000

Constance Heitmeyer
Naval Research Laboratory (Code 5546)

Washington, DC 20375
heitmeyer@itd.nrl.navy.mil

Ramesh Bharadwaj
Naval Research Laboratory (Code 5546)

Washington, DC 20375
ramesh@itd.nrl.navy.mil

Abstract: To date, the SCR (Software Cost Reduction) requirements method
has been used in industrial environments to specify the requirements of many
practical systems, including control systems for nuclear power plants and avion-
ics systems. This paper describes the use of the SCR method to specify the
requirements of the Light Control System (LCS), the subject of a case study at
the Dagstuhl Seminar on Requirements Capture, Documentation, and Valida-
tion in June 1999. It introduces a systematic process for constructing the LCS
requirements speci�cation, presents the speci�cation of the LCS in the SCR tab-
ular notation, discusses the tools that we applied to the LCS speci�cation, and
concludes with a discussion of a number of issues that arose in developing the
speci�cation.

Keywords: software, software engineering, requirements, speci�cations, tools
and techniques, formal veri�cation.

Categories: D.2.1, D.3.1

1 Introduction

The SCR (Software Cost Reduction) requirements method is a formal method
based on tables for the speci�cation and analysis of the required behavior of
complex software systems. Originally developed by NRL researchers to docu-
ment the requirements of the operational ight program of the US Navy's A-7
aircraft [2, 12, 13], SCR has also been applied by a number of organizations in
industry (e.g., Grumman, Bell Laboratories, Ontario Hydro, and Lockheed) to a
wide range of practical systems, including avionics systems, telephone networks,
and safety-critical components of nuclear power plants. For example, in 1994,
in the largest application of SCR to date, Lockheed used SCR to specify the
requirements of the C-130J ight program [8], a program containing more than
250; 000 lines of Ada code.

To provide tool support for the SCR method, our group at the Naval Re-
search Laboratory has developed an integrated suite of tools called the SCR*
toolset [10]. The toolset includes a speci�cation editor for creating and modifying

a requirements speci�cation and several analysis tools, including a consistency
checker for checking the speci�cation for defects such as type errors, missing
cases, and unwanted nondeterminism [11]; a dependency graph browser for dis-
playing the dependencies among the variables in the speci�cation; and a simula-
tor for symbolically executing the system based on the speci�cation. Currently,
more than 100 academic, industrial, and government organizations in the US,
Canada, and several other countries are experimenting with the SCR* toolset.

The utility of the SCR* toolset has been evaluated in four pilot projects. In
one, NASA researchers used the toolset's consistency checker to detect several
errors in the requirements speci�cation of the International Space Station [7]. In
a second project, Rockwell engineers used the SCR* toolset to detect 28 errors,
many of them serious, in the requirements speci�cation of a ight guidance
system [17]. In a third project, our group at NRL used the SCR* toolset to expose
several errors, including a safety violation, in a contractor-produced speci�cation
of a US military system [9]. In a fourth project, our group used the SCR* toolset
to specify the requirements of a cryptographic device (CD), to verify that the
CD speci�cation satis�es seven security properties, and to demonstrate that
the speci�cation violates an eighth property [16]. To be useful in practice, the
bene�ts of using a method should be su�cient to warrant the cost in human
e�ort of applying the method. In the latter two projects, the potential cost-
e�ectiveness of the SCR method and the SCR* toolset was demonstrated: in
each case, specifying and analyzing a moderately complex system required only
one person-month of e�ort.

This paper describes the use of the SCR method to specify the require-
ments of the Light Control System (LCS), the subject of a case study at the
Dagstuhl Seminar on Requirements Capture, Documentation, and Validation in
June 1999. We present the LCS speci�cation in the SCR tabular notation to al-
low a comparison between the SCR requirements method and other alternative
requirements methods. To develop the LCS requirements speci�cation, we follow
a four-step process. This process provides a systematic approach to developing
and organizing a requirements speci�cation of a nontrivial system. The product
of this process is a \build-to speci�cation," a requirements speci�cation that de-
scribes the set of all acceptable system implementations. Thus, the SCR method
would capture the results of the requirements elicitation phase. In developing the
LCS requirements speci�cation with SCR, one would construct the speci�cation
with the speci�cation editor and apply the analysis tools of the SCR* toolset to
validate and verify that the speci�cation satis�es desired properties.

The remainder of this paper is organized as follows. Section 2 describes the
four-step process we propose for specifying the system requirements using SCR.
It also reviews the constructs and notation used in SCR speci�cations. Section 3
uses the process presented in Section 2 to specify the requirements of a signi�cant
component of the LCS, namely, the component that controls the light setting
in o�ces. In specifying the LCS requirements, we had two options. We could
attempt to construct a complete speci�cation of the required behavior of the
LCS presented in [1]. Alternatively, we could focus our attention on a critical
piece of the required LCS behavior. We chose the latter option because we believe
that it is better to demonstrate our method on a carefully chosen component, to
obtain feedback about our speci�cation of that component from system experts,
and then to revise and extend our speci�cation based on the feedback. Section 3
also shows how the SCR method can be used to handle hardware malfunctions

and to specify timing constraints. Section 4 describes the results of applying the
SCR* toolset to the LCS speci�cation. Section 5 discusses issues that arose when
we applied our requirements method to the LCS, and Section 6 compares our
approach to requirements speci�cation with other similar approaches. Finally,
Section 7 presents some conclusions and future work.

2 A Process for Specifying Requirements

By speci�cation, we mean a description of the required behavior of an entire
system, subsystem, or component. A speci�cation should describe what is to
be built, omitting details of how this will be achieved. A system or component
that satis�es the speci�cation can be implemented in hardware, software, or a
combination of both. An important goal is to avoid both overspeci�cation and
underspeci�cation. Thus a speci�cation must describe the required black-box
behavior of every acceptable implementation and must exclude all unacceptable
implementations.

Figure 1 is the basis for a four-step process for constructing a requirements
speci�cation. The �rst step creates the System Requirements Speci�cation (SRS),
which describes the required external behavior of the system in terms of moni-
tored and controlled quantities in the system environment. The remaining steps
re�ne and extend the SRS. The second step creates the System Design Speci-
�cation (SDS), which identi�es the input and output devices (e.g., sensors and
actuators) of the system. The third step creates the Software Requirements Spec-
i�cation (SoRS), which re�nes the SRS by adding modules which use values read
from input devices to calculate values of the monitored quantities and which use
the computed values of controlled quantities to drive output devices. The fourth
step extends the SRS by adding behavior to handle hardware malfunctions, e.g.,
sensor failures.

By applying the information hiding principle [18] to the requirements spec-
i�cation produced by this process, parts of the speci�cation that are unlikely
to change together are assigned to di�erent modules. In applying information
hiding to the speci�cation, all of the ways in which the requirements are likely
to change are identi�ed, and the required system behavior is decomposed into
modules so that exactly one module is associated with a single change. The goal
is to organize the requirements speci�cation such that each change requires a
change to only a single module. How this is achieved is described below.

2.1 System Requirements Speci�cation

To construct an SRS using SCR, environmental quantities relevant to the system
behavior are identi�ed, and each quantity is represented by a mathematical
variable. The environmental quantities consist of both controlled quantities {
quantities in the environment that the system controls { andmonitored quantities
{ quantities in the environment that can inuence system behavior. In Figure 1,
M represents the monitored quantities and C represents the controlled quantities.

The desired system behavior is documented in the SRS by describing two
relations, NAT and REQ, on the monitored and controlled quantities; these
relations are part of the Parnas Four Variable Model [19]. The relation NAT de-
scribes the constraints imposed on the environmental quantities by physical laws

input
vars.

{System Req.
Specification

{

{Software Req.
Specification

System Design
Specification

REQ

NAT

D_OUT

Output Device
Interf. Module

D_IN REQ~

SOFTWARE

SYSTEM

output
vars.

sensors actuators

......

Input Device
Interf. Module

Device-Independ..
Module

C
~

M
~

M C

Figure 1: Relationship between the SRS, the SDS, and the SoRS.

and the system environment. REQ describes the relation between the monitored
and controlled variables that the system must enforce to produce the required
system behavior. In developing the SRS, we initially specify REQ in terms of
the ideal behavior of the system; that is, we assume that the system can ob-
tain perfect values of the monitored quantities and compute perfect values of
the controlled quantities. Later, for each controlled variable, we specify timing
constraints (and possibly tolerances).

2.2 System Design Speci�cation

The SDS identi�es and documents the characteristics of the resources that are
available to estimate values of the monitored quantities and to set values of the
controlled quantities. These values are usually read from or written to hardware
devices, such as sensors and actuators. (Although we assume below that the re-
sources are hardware devices, what follows also applies when the resources are
external computers or other software modules.) The values in the system's hard-
ware/software interfaces are denoted by mathematical variables. These variables
are partitioned into input variables { values read by input devices { and output
variables { values written to output devices. The product of this step is a de-
scription of the input and output devices and of the relationship between the
input and output variables and the monitored and controlled variables.

2.3 Software Requirements Speci�cation

The SRS and the SDS are the foundation for the SoRS, which describes how the
input variables are to be used to estimate values of the monitored variables and
how estimates of the controlled variables are to be used to control the output
devices using the output variables. Figure 1 shows the relationship between the

SRS, the SDS, and the SoRS.1 Figure 1 also shows the decomposition of the
SoRS into three modules: two device-dependent modules called the input device
interface module and the output device interface module, and a single device-
independent module called the function driver module. This organization was
inuenced by the module structure of the A-7 ight software [20]. In Figure 1,
relation D IN speci�es how estimates of the monitored variables, represented byeM, are computed in terms of the input variables, and relation D OUT speci�es

how estimates of the controlled variables, represented by eC, are used to compute
the values of the output variables. The outputs of the input device interface
module, i.e., the estimated values of the monitored variables, form the inputs to
the function driver module. The function driver module uses these estimates to
compute estimates of the controlled variables.

The required behavior of the function driver module is already de�ned by the
REQ relation, speci�ed as part of the SRS during the �rst step of our process.
What remains is to document the required behavior of the device-dependent
modules, i.e., D IN and D OUT. To satisfy the information hiding principle, the
input device interface module only uses values of input variables to estimate
values of the monitored variables, and the output device interface module only
uses values of controlled variables to compute the values of the output variables.2

The bene�t of this approach is that it makes the speci�cation easy to change.
For example, to introduce a new input or output device or to modify or add a
system function, usually only a small part of a single module will change.

In Figure 1, the relation gREQ speci�es the relation between estimates of the

monitored quantities eM and estimates of the controlled quantities eC. In most

cases, gREQ will extend REQ because gREQ not only describes the ideal behavior
captured by REQ but also describes externally visible behavior that is not part of
the ideal behavior. Because REQ is based on perfect knowledge of the monitored
quantities and perfect computations of the controlled quantities, REQ does not
describe how the system responds to hardware malfunctions. In practical sys-
tems, hardware devices, such as sensors, will fail, and the system will need to

provide external noti�cation of such failures. gREQ extends the required behavior
described by REQ by describing how noti�cation of hardware malfunctions is
presented to the system users.

2.4 The SCR Notation

To specify the required system behavior in a practical and e�cient manner,
the SCR method uses terms and mode classes. A term is an auxiliary variable
that helps keep the speci�cation concise. A mode class is a special case of a
term, whose values are modes. Each mode de�nes an equivalence class of system
states useful in specifying the required system behavior. In SCR speci�cations,
we often use the following pre�xes in variable names: \m" to indicate monitored
variables, \t" for terms, \mc" for mode classes, \c" for controlled variables, \i"
for input variables, and \o" for output variables.

Conditions and events are important constructs in SCR speci�cations. A
condition is a predicate de�ned on one or more state variables (a state variable

1 Although the structure of the diagram in Figure 1 resembles a commuting diagram,
it does not actually commute.

2 In some cases, this assumption is too strong. For an example, see Section 3.3.2.

is a monitored or controlled variable, a mode class, or a term). An event occurs
when a state variable changes value. The notation \@T(c) WHEN d" denotes a
conditioned event, de�ned as

@T(c) WHEN d
def
= :c ^ c0 ^ d; (1)

where the unprimed conditions c and d are evaluated in the \old" state, and the
primed condition c0 is evaluated in the \new" state. Informally, this expression
denotes the event \predicate c becomes true in the new state when predicate
d holds in the old state". The notation \@F(c)" denotes the event @T(NOT c)
and \@C(x)" denotes the event \variable x has changed value". The notation
DUR(c) indicates the length of time that condition c has been true. For example,
if c becomes true when the system time, represented by time, is 10, then if c
remains true at system time 15, the condition DUR(c) > 8 is false at time = 15,
since 15 � 10 = 5 6> 8; if c still remains true at system time 25, the condition
DUR(c) > 8 is true at time = 25, since 25� 10 = 15 > 8.

To specify the REQ relation, SCR speci�cations use a set of tables. Each
table de�nes the value of a dependent variable (a term, mode class, or controlled
variable) as a function.3 A table may be either a condition table or an event table.
Typically, a condition table describes the value of a controlled variable or term
as a function of a mode class and a condition, whereas an event table describes
the value of a controlled variable or term as a function of a mode class and an
event. A mode transition table is a special case of an event table. Although many
SCR tables use modes to de�ne the value of a variable, some SCR tables omit
modes. In Section 3.3, we also use tables to specify the functions that make up
D IN and D OUT.

Figures 2 and 4 contain examples of a condition table and an event table.
(Like many tables in Section 3, the rightmost column of Figures 2 and 4, labeled
Trac. for \traceability," identi�es the associated requirement in the LCS descrip-
tion [1].) Figure 2 contains a moded condition table that de�nes the value of the
term tRemLL as a function of the mode class mcStatus, the terms tCurrentLSVal
and tOverride, and the monitored variable mIndoorLL. (Section 3 describes the
meaning of these variables.) The table's �rst two rows state that tRemLL is
zero if mcStatus is unoccupied, or if mcStatus is occupied and mIndoorLL >
tCurrentLSVal, and that tRemLL has the value tCurrentLSVal � mIndoorLL if
mcStatus is occupied and mIndoorLL � tCurrentLSVal. The function de�ned
by Figure 2 is shown in Figure 3.

Figure 4 contains a modeless event table that de�nes the new value of the
controlled variable cWallLights as a function of mcStatus, the monitored vari-
ables mWallLights and mFMOverride, and the old value of cWallLights. The
table states that cWallLights changes to on if mWallLights becomes on when
cWallLights is o� or if mcStatus changes to occupied; that cWallLights
changes to o� if mWallLights changes to o� when cWallLights is on, if mcStatus
changes to unoccupied, or if FMOverride becomes true when mcStatus is not
occupied; and that otherwise the value of cWallLights does not change. By
applying (1), the event table in Figure 4 can be translated into a function, part
of whose de�nition is given in Figure 5.

3 Some tables in Section 3 describe two functions. See, e.g., Figure 14.

Mode Class = mcStatus Trac.

Mode Condition

unoccupied true false FM3
occupied mIndoorLL> tCurrentLSVal mIndoorLL � tCurrentLSVal FM1
temp empty mIndoorLL> tCurrentLSVal mIndoorLL� tCurrentLSVal FM1,

OR tOverride AND NOT tOverride FM6

tRemLL 0 tCurrentLSVal � mIndoorLL FM1

Figure 2: Condition table de�ning the value of term tRemLL

tRemLL =

8>>>>><
>>>>>:

0 if (mcStatus=unoccupied) _ (mcStatus = occupied^
mIndoorLL > tCurrentLSVal)_
(mcStatus=temp empty ^
(mIndoorLL > tCurrentLSVal _ tOverride))

tCurrentLSVal if (mcStatus=occupied ^ mIndoorLL�tCurrentLSVal)
� mIndoorLL _ (mcStatus=temp empty^

mIndoorLL > tCurrentLSVal ^ :tOverride)

Figure 3: Function de�ned by condition table for term tRemLL

Event cWallLights0 Trac.

@T(mWallLights = on) WHEN cWallLights = off OR on -
@T(mcStatus = occupied) U1

@T(mWallLights = off) WHEN cWallLights = on OR off -
@T(mcStatus = unoccupied) OR FM3
@T(mFMOverride) WHEN mcStatus 6= occupied FM6

Figure 4: Event table for controlled variable cWallLights

cWallLights
0 =

8>><
>>:

on if (mWallLights0=on ^ mWallLights 6=on ^
cWallLights=off) _ : : :

off if (mWallLights0=off ^ mWallLights 6=off ^
cWallLights=on) _ : : :

cWallLights otherwise

Figure 5: Function de�ned by event table for cWallLights

3 Specifying the LCS in SCR

To illustrate the above process, we apply it to the Light Control System (LCS)
described in [1]. The LCS controls the ambient light level in a collection of o�ces
and corridors. Each o�ce contains a group of wall lights and a group of window
lights. The LCS has two possible light scenes, a \chosen" light scene and a
\default" light scene. For each light scene, the user sets the desired light level in
lux and the desired distribution of the lighting between the wall and window light
groups. When someone enters an empty o�ce, the default light scene de�nes the
o�ce light setting. Users may choose a di�erent light scene when they are in the
o�ce. When an o�ce is reoccupied within T1 minutes after the last person left
the o�ce, the chosen light scene is re-established. When an o�ce is unoccupied

for more than T3 minutes, the system must turn the lights o�. The value of
T1 is set by a user of the o�ce, whereas the value of T3 is set by a Facilities
Manager. The Facilities Manager can also push an override button to turn o�
both lighting groups in an empty o�ce. To the extent feasible, the system must
use natural light to achieve the desired light level.

To specify the requirements of the LCS in SCR, we have made the following
simplifying assumption. We only specify the required behavior of the control
system for a single o�ce. Extending this speci�cation to make it applicable to
all o�ces should be straightforward. Also, since the required behavior of the
control system for a section of the corridors is a special case of the required
behavior for an o�ce, it should be possible to specialize the speci�cation for
o�ces to corridors. However, this paper does not discuss the details of this
specialization. An important engineering consequence of this approach is that
contractors who ultimately develop an implementation would only be required
to implement one lighting system instead of two (one for o�ces and one for
corridors), thus resulting in considerable savings in time and cost.

This section applies each step of the four-step process described in Section 2
to create the LCS speci�cation. Section 3.1 describes the SRS for the LCS by
specifying the monitored and controlled variables and the relation REQ. Sec-
tion 3.2 describes the input and output variables associated with the LCS hard-
ware devices and how these variables are related to the monitored and controlled
variables. Section 3.3 describes the SoRS by specifying the relations D IN and
D OUT, i.e., how estimates of the monitored variables are computed from values
of the input variables and how the values of the controlled variables are written
to output devices. Finally, Section 3.4 shows how the SoRS and the SRS are ex-
tended to report hardware malfunctions and how timing constraints are added
to the speci�cations. The complete SCR requirements speci�cation of the LCS
is located at http://chacs.nrl.navy.mil/LCS.

3.1 System Requirements Speci�cation

The SRS that we have developed for the LCS contains 21 variables: 12 monitored
variables, four controlled variables, a single mode class, and four terms. Below,
we describe how we applied the following four steps to create the SRS:

1. Identify and describe the controlled variables.
2. Identify and describe the monitored variables.
3. Identify and describe the mode class(es).
4. Specify the required relation REQ between the monitored and the controlled

variables.

3.1.1 Identifying the Controlled Variables

In the LCS, the controlled variables { i.e., the environmental quantities that the
system controls { are the two groups of lights, the wall lights and the window
lights. For each group, the system determines the light level in lux and whether
the light group is on or o�. We represent the desired ambient light levels provided
by the wall and window lights with the two controlled variables cWallLL and
cWindowLL and the on/o� status of each group of lights with the controlled vari-
ables cWallLights and cWindowLights. Figure 6 lists the controlled variables
for the LCS along with their types, initial values, and brief descriptions.

Name Type Init. Val. Description

cWallLL yLightLevel 0 Intensity level of wall lights
cWindowLL yLightLevel 0 Intensity level of window lights
cWallLights yLight off On/o� status of wall lights
cWindowLights yLight off On/o� status of window lights

Figure 6: Controlled Variables of the Light Control System

Name Type Init. Val. Description

mOccupied boolean false True when o�ce is occupied
mT1 yTimer 10 Time to compute reoccupancy
mT3 yTimer 15 Time until empty room
mFMOverride boolean false True if Fac. Mgr Override
mWallLights yLight off On/o� status of wall lights
mWindowLights yLight off On/o� status of window lights
mDefLSVal yLightLevel 100 Default ambient light level
mChosenLSVal yLightLevel 200 Chosen ambient light level
mDefLSOpt yOption wall Default ambient light option
mChosenLSOpt yOption wall Chosen ambient light option
mIndoorLL yLightLevel 0 Level of nat. light in o�ce
time integer 0 System time

Figure 7: Monitored Variables of the Light Control System

According to the system description [1], both the system and the environment
control the on/o� status of the wall and window lights. To allow a user to
turn the wall and window lights o� and on manually, each o�ce contains two
switches, one to control the wall lights and another to control the window lights.
The two controlled variables cWallLights and cWindowLights are used in the
speci�cation to indicate the desired status (on or o�) of the wall lights and the
window lights, respectively. Because the environment can turn each group of
lights on and o� independently of the system, the LCS speci�cation must take
these environmental actions into account.

3.1.2 Identifying the Monitored Variables

Next, we identify the environmental quantities that the system monitors to de-
termine when to change the on/o� status and the light level of each light group.
Figure 7 lists the monitored variables along with their types, initial values, and
brief descriptions. The status of the o�ce { whether it is occupied or not { is
represented by the boolean monitored variable mOccupied and the two time in-
tervals by the monitored variables mT1 and mT3. The boolean monitored variable
mFMOverride, which represents the state of the Facilities Manager override push-
button, is true when the pushbutton is depressed and false otherwise. The on/o�
status of each light group is represented by the monitored variables mWallLights
and mWindowLights. Because both the LCS and the environment can change the
on/o� status of the lights, these monitored variables are needed to keep the val-
ues of the corresponding controlled variables, cWallLights and cWindowLights,
consistent with the actual on/o� status of each lighting group. The selected light
level and light distribution are represented as mChosenLSVal and mChosenLSOpt

Name Type Units

yLightLevel integer in [0, 10000] lux
yLight enum in foff, ong -
yTimer integer in [0, 30] minutes
yOption enum in fboth, wall, windowg -

Figure 8: Type dictionary for the Light Control System

for the chosen light scene and mDefaultLSVal and mDefaultLSOpt for the default
light scene. System time is represented by the distinguished monitored variable
time, a nondecreasing, non-negative variable implicit in all SCR speci�cations.
In the LCS speci�cation, time is an integer with initial value 0, whose units are
minutes.

The amount of natural light in an o�ce is represented by the monitored
variable mIndoorLL. We decided that the outdoor light level described in [1]
is not a monitored quantity. The monitored quantity of interest is instead the
amount of natural light in the o�ce, i.e., mIndoorLL. In Section 3.3, we assume
that we can use information from the outdoor light sensor and other information
to estimate the value of mIndoorLL.

In specifying the controlled and the monitored variables, a number of user-
de�ned types are useful. These are listed in Figure 8. Note that the distribution
of the light level between the wall and window groups is either both, wall, or
window, where both indicates that the light level should be distributed equally
among the two light groups, and wall (window) indicates that, to the extent
possible, the wall (window) lights are used to achieve the desired light level and
the remaining light is provided by the window (wall) group.

The information about the monitored and controlled variables in Figures 6-8
can be regarded as part of the NAT relation. SCR speci�cations also include
an assumptions dictionary in which additional information about NAT can be
recorded. One example of a NAT assumption required in the LCS speci�cation
is the constraint cWallLL � 5000 ^ cWindowLL � 5000, which restricts the
maximum brightness of each lighting group to at most 5000 lux as required by
the LCS description [1]. (The de�nition of the data type yLightLevel allows
the light level to be as high as 10000 lux.) A second example is a constraint
which keeps the monitored and controlled variables representing the current
on/o� status of each light group consistent. For example, whenever the system
changes the wall lights to on by setting cWallLights0 to on, the environment
must change the monitored variable mWallLights to on to keep the system and
the environment consistent. In SCR speci�cations, we usually assume that the
updating of the monitored variable occurs in the next step after the system has
changed the corresponding controlled variable.

3.1.3 Identifying the Mode Class(es)

As noted above, each mode in a mode class de�nes an equivalence class of system
states. Modes are useful in de�ning the required relation REQ between the mon-
itored and controlled variables; in particular, each mode divides the de�nition
of many of the functions used to de�ne REQ into di�erent parts. In the LCS,
the value of each of the four controlled variables is a function of the occupancy

Mode Class = mcStatus Trac.

Old Mode Event New Mode

unoccupied @T(mOccupied) occupied U1, U2, U4
occupied @F(mOccupied) temp empty U3, U4
temp empty @T(DUR(NOT mOccupied) > mT3) unoccupied U4

@T(mOccupied) occupied U3

Figure 9: Mode transition table for the mode class mcStatus

status of an o�ce. Hence, we de�ne a mode class called mcStatus to indicate
when an o�ce is occupied, when it is temporarily empty (i.e., unoccupied for up
to T3 minutes), and when it is unoccupied (i.e., unoccupied for more than T3
minutes). Figure 9 contains a mode transition table which speci�es new values for
the mode class mcStatus as a function of the monitored variables mOccupied and
mT3. We assume that in the initial state, mcStatus has the value unoccupied.

3.1.4 Specifying the Required Relation REQ

After the environmental variables and the mode classes have been de�ned, the
next step is to specify the relation REQ. To do so, we must de�ne each of the
four controlled variables listed in Figure 6 as a function of the monitored vari-
ables listed in Figure 7 and the mode class mcStatus. Specifying the controlled
variables, cWallLights and cWindowLights, which change the on/o� status of
the two lighting groups, is somewhat complex because the system does not have
complete control of the o�ce lighting. Specifying the two remaining controlled
variables, cWallLL and cWindowLL, which de�ne the light level the system must
assign to each light group, is even more complex, because the setting for each
group depends on the parameters de�ned for the chosen and default light scenes,
the amount of natural light in the o�ce, and whether the Facilities Manager has
pushed the override button. To specify the value of cWallLL and cWindowLL in
a concise and understandable manner, we de�ne four terms: two terms de�ne
the current desired light level and option, the third term de�nes the amount of
arti�cial light that is needed, and the fourth term de�nes whether the Facilities
Manager has turned o� the lights by pushing the override button when the o�ce
is empty.

The event table in Figure 4 (see Section 2.4) describes cWallLights0, the new
value of the wall lights, as a function of o�ce occupancy, the monitored vari-
ables mWallLights and mFMOverride, and the old value of cWallLights. The
second row of the table states that if the o�ce becomes occupied, the system
must turn the wall lights on, whereas the fourth row states that if the o�ce re-
mains unoccupied after some time interval (i.e., mcStatus becomes unoccupied),
the system must turn the wall lights o�. Because our LCS speci�cation repre-
sents the on/o� status of the wall lights using both a monitored and a con-
trolled variable, the speci�cation must maintain consistency between the two
variables. Hence, if mWallLights turns to on (because the user turns the wall
lights on) when cWallLights is o�, the �rst row of the table updates the value
of cWallLights to reect this change. Similarly, the third row states that the
variable cWallLights must reect the status of the wall lights if the user turns
them o�, i.e., if mWallLights turns to o� when cWallLights is on. According
to the LCS description [1], the Facilities Manager may turn o� both light groups

Name Type Init. Val. Description

tOverride boolean false True if Fac. Mgr. pushed override
tCurrentLSVal yLightLevel 0 Current desired light level
tCurrentLSOpt yOption wall Current desired light distribution
tRemLL yLightLevel 0 Lighting produced by arti�cial light

Figure 10: Terms Used to De�ne cWallLL and cWindowLL

Event tOverride0 Trac.

@T(mFMOverride) WHEN mcStatus 6= occupied true FM6
@T(mcStatus=occupied) false U1

Figure 11: Event table for term tOverride

Event tCurrentLSVal0 Trac.

@T(mcStatus = occupied) mDefLSVal U4
WHEN (DUR(mcStatus 6= occupied) � mT1)

@C(mChosenLSVal) mChosenLSVal0 U2

Figure 12: Event table for term tCurrentLSVal

Event tCurrentLSOpt0 Trac.
@T(mcStatus = occupied) mDefLSOpt U4

WHEN (DUR(mcStatus 6= occupied) � mT1)

@C(mChosenLSOpt) mChosenLSOpt0 U2

Figure 13: Event table for term tCurrentLSOpt

when an o�ce is unoccupied or temporarily empty. This behavior is captured
by the �fth row of Figure 4, which states that the system must turn o� the wall
lights when the pushbutton mFMOverride is depressed and the o�ce is not oc-
cupied. In all other cases (e.g., when the o�ce becomes temporarily empty), the
on/o� status of the wall lights is unchanged. An event table similar to the table
shown in Figure 4 de�nes the value of cWindowLights.

Figure 10 lists the four terms used to de�ne the values of cWallLL and
cWindowLL along with their types, initial values, and brief descriptions. Figure 11
contains an event table which de�nes the �rst term, tOverride, as a function of
mFMOverride and the mode class mcStatus. The two terms tCurrentLSVal and
tCurrentLSOpt use user inputs and information about o�ce occupancy to de-
termine the desired ambient light level and the distribution of the ambient light
among the wall and window lights. The event table in Figure 12, which speci�es
the new value of the current light level tCurrentLSVal, states that if the o�ce
becomes occupied after being unoccupied for at least mT1 minutes, then the light
level associated with the default light scene is selected as the current light level,
whereas if the chosen light level changes, then the light level associated with the
chosen light scene is selected. The new value of tCurrentLSOpt, which is de�ned
by the event table in Figure 13, is similarly de�ned.

Based on the amount of natural light in the o�ce, the term tRemLL represents
the amount of arti�cial light that is needed to achieve the desired light level.

Condition cWallLL cWindowLL Trac.

tCurrentLSOpt = both tRemLL/2 tRemLL/2 Def.
tCurrentLSOpt = wall AND 5000 tRemLL � 5000 of
tRemLL > 5000 light

tCurrentLSOpt = wall AND tRemLL 0 scene
tRemLL � 5000

tCurrentLSOpt = window AND tRemLL � 5000 5000
tRemLL > 5000

tCurrentLSOpt = window AND 0 tRemLL
tRemLL � 5000

Figure 14: Condition table for controlled variables cWallLL and cWindowLL

The condition table in Figure 2 (see Section 2.4) states that no arti�cial light is
needed (tRemLL= 0) if the o�ce is unoccupied for some period, if the o�ce is
temporarily empty or occupied and the amount of natural indoor light exceeds
the current desired light level, or if the override button is pushed when the o�ce
is temporarily empty. The table states further that when the o�ce is occupied or
if the override button has not been pushed when the o�ce is temporarily empty,
the amount of needed arti�cial light is the di�erence between the current desired
light level and the amount of natural indoor light.

Figure 14 shows a condition table which de�nes the values of the controlled
variables cWallLL and cWindowLL. This table states that if the option selected is
both, then half of the requested light is provided by the wall lights and the other
half by the window lights. If the option selected is wall, then the wall lights are
used to provide the requested light level. If the requested light level exceeds the
maximum provided by the wall lights, then the remaining light is provided by
the window lights. If the option selected is window, then the situation is reversed.

Figure 15 shows the dependency graph for the SRS of the LCS. This graph,
which was generated by the dependency graph browser of the SCR* toolset,
illustrates the relationship between the 21 variables in the SRS. In the graph,
the eleven monitored variables and the distinguished variable time appear as
the leftmost nodes and the four controlled variables as the rightmost nodes. The
graph shows the importance of the single mode class mcStatus: the value of every
dependent variable in the speci�cation depends either directly or indirectly on
this mode class. The graph also shows the dependence of the controlled variables
cWallLL and cWindowLL on the four terms listed in Figure 10.

3.2 System Design Speci�cation

First, this section describes the two control panels needed in the LCS. Next,
the section describes the input and output variables associated with the selected
LCS hardware devices and the correspondence between these variables and the
monitored and controlled variables speci�ed in Section 3.1. To keep the paper
concise, this section omits details of the hardware device interfaces that would be
provided to the software (e.g., whether the devices are memory- or I/O-mapped,
interrupt driven or polled; their physical addresses; details of their control and
data registers; etc). However, these device details need to be recorded in the SDS
because the software designers require this information to design and write code
for the device-dependent modules.

Figure 15: Dependency Graph for Speci�cation of LCS Ideal Behavior

3.2.1 LCS Control Panels

The part of the LCS that we specify includes two control panels: an o�ce control
panel and a Facilities Manager control panel. Figure 16, which illustrates the of-
�ce control panel, contains three sliders, one for setting the value of the time
interval mT1 and the others for setting the light levels de�ned by the monitored
variables mDefLSVal and mChosenLSVal. Each of the two option switches, which
are represented by the monitored variables mDefLSOpt and mChosenLSOpt, in-
dicates a value in the set fwall; window; bothg and describes how the wall and
window lights are used to achieve the desired ambient light level. The o�ce con-
trol panel also contains the two on/o� switches described above for manually
turning the wall and window lights o� and on. The Facilities Manager control
panel, shown in Figure 17, contains the override pushbutton, a slider for setting
the value of the time interval mT3, and two lights indicating when a sensor mal-
function has occurred. One light reports a malfunction of the motion detector,
and the other reports a malfunction of the outdoor light sensor.

3.2.2 Specifying the Input and Output Variables

Figure 18 lists the 14 input and six output variables associated with these hard-
ware devices along with their types, initial values, and brief descriptions. The
data types of many of these variables are de�ned in the type dictionary in Fig-
ure 8. The only new user-de�ned type is yAmbientLevel, an integer in [0; 100].

Figure 16: O�ce Control Panel for the LCS.

Figure 17: Facilities Manager Control Panel for the LCS.

Figure 19 shows the correspondence between the input variables and the
monitored variables. To enable the software to determine whether a room is
occupied (i.e., to estimate the value of mOccupied), each o�ce is equipped with
a passive infrared motion detector and a door closed contact. The output of the
motion detector is represented by boolean variable iMD, which is true when there
is movement in the range of the detector and false otherwise. The output of the
door closed contact is represented by the boolean variable iDCC, which is true if
the door is fully closed and false otherwise. The level of ambient light outdoors
is sensed by an outdoor light sensor and is represented by the input variable
iOLS. This variable denotes the value recorded by the outdoor light sensor in
lux. The value of the outdoor light sensor is used to compute the indoor light
level (represented by the monitored variable mIndoorLL). The status lines for
the window and wall lights, iSLLWindow and iSLLWall, sense if the light voltage
is high or low and thus are used to estimate whether the window lights and
the wall lights, represented by the monitored variables mWindowLights and the
mWallLights, are o� or on.

The LCS description states that two hardware devices, the motion detec-
tor and the outdoor light sensor, can malfunction. Malfunctions in these de-

Input Data Items
Name Type Init. Val. Description

iMD boolean false True when motion is sensed
iMDmalfunction boolean false True if motion detector malfunctions
iDCC boolean false True if door is closed
iDefLSOpt yOption wall Default light scene option
iDefLSVal yLightLevel 200 Default light scene value
iChosenLSOpt yOption wall Chosen light scene option.
iChosenLSVal yLightLevel 100 Chosen light scene value
iT1 yTimer 10 Time to compute reoccupancy
iT3 yTimer 15 Time to empty room
iOLS yLightLevel 0 Output of outdoor light sensor
iOLSmalfunction boolean false True if outdoor light sensor malfunctions
iFMOverride boolean false Override button of Fac. Mgr.
iSLLWindow boolean false Status of window lights
iSLLWall boolean false Status of wall lights

Output Data Items
Name Type Init. Val. Description

oPulseWall boolean false Toggles wall lights on and o�
oPulseWindow boolean false Toggles window lights on and o�
oDimmerWall yAmbientLevel 0 Controls wall light
oDimmerWindow yAmbientLevel 0 Controls window light
oOLSmalfunction boolean false Turns on OLSmalfunction light
oMDmalfunction boolean false Turns on MDmalfunction light
oCSAWall boolean false Sends signal to wall lights
oCSAWindow boolean false Sends signal to window lights

Figure 18: Input and Output Variables for the LCS

vices are represented by assigning the input variables iMDmalfunction and
iOLSmalfunction the value true. Unlike the other input variables, neither of
these input variables is (at this point) associated with any monitored variable.
This is because the ideal system behavior is de�ned without knowledge of the
selected hardware devices. Section 3.4 describes how the set of monitored and
controlled variables is extended to include variables that report hardware mal-
functions.

The LCS description of dimmable lights also includes a signal \control system
active" that is to be sent to each light cluster every 60 seconds. If the signal does
not arrive on time, the corresponding light cluster enters a fail-safe mode in
which the brightness is assumed to be 100%. We de�ne two output variables,
oCSAWall and oCSAWindow, one for each light cluster, to represent these signals.

Each of the seven remaining input variables is associated with a single mon-
itored variable with the same name, except for the pre�x. Thus, the values
of the seven input variables, iDefLSVal, iChosenLSVal, iT1, iT3, iDefLSOpt,
iChosenLSOpt, and iFMOverride, are used to estimate the values of the corre-
sponding monitored variables, mDefLSVal, mChosenLSVal, mT1, mT3, mDefLSOpt,
mChosenLSOpt, and mFMOverride.

Figure 20 shows the correspondence between the controlled variables and
the output variables. The output variables oPulseWindow and oPulseWall de-
termine the on/o� status of the window and wall lights, whereas the output

Input Variable Monitored Variable

iMD mOccupied
iMDmalfunction -
iDCC mOccupied
iDefLSOpt mDefLSOpt
iDefLSVal mDefLSVal
iChosenLSOpt mChosenLSOpt
iChosenLSVal mChosenLSVal
iT1 mT1
iT3 mT3
iOLS mIndoorLL
iOLSmalfunction -
iFMOverride mFMOverride
iSLLWindow mWindowLights
iSLLWall mWallLights

Figure 19: Correspondence between Input and Monitored Variables

Output Variable Controlled Variable

oPulseWall cWallLights
oPulseWindow cWindowLights
oDimmerWall cWallLL
oDimmerWindow cWindowLL
oMDmalfunction -
oOLSmalfunction -
oCSAWall -
oCSAWindow -

Figure 20: Correspondence between Controlled and Output Variables

variables oDimmerWindow and oDimmerWall determine the brightness of the cor-
responding lights. The values of the latter variables range between 0 and 100.
Lights on the Facilities Manager's control panel reporting hardware malfunctions
are represented by the output variables oMDmalfunction and oOLSmalfunction.

3.3 Software Requirements Speci�cation

As described above, the SoRS is organized into two device-dependent modules
and a single device-independent module. Because the required behavior of the
device-independent module is already de�ned by the relation REQ in the SRS,
what remains is to specify the input and output device interface modules, i.e.,
the relations D IN and D OUT.

3.3.1 Specifying the Relation D IN.

The relation D IN speci�es how the input variables listed in Figure 19 are used to
compute estimates of the monitored variables. (In our approach, estimates of the

monitored and controlled variables are denoted as gmOccupied, gmT1, etc. To im-
prove readability, we have omitted the tildes in the tables and the rest of this sec-
tion.) Estimating the values of �ve of the monitored variables { mChosenLSVal,

Condition mWallLights

iSLLWall on
NOT iSLLWall off

Figure 21: Condition table for estimate of mWallLights

Event mOccupied0

@T(iMD) true
@F(iMD) WHEN (NOT iDCC OR (DUR(iDCC AND iMD)< 1)) false

Figure 22: Event table for estimating mOccupied

mChosenLSOpt, mT1, mT3, and mFMOverride { from the corresponding input vari-
ables { iChosenLSVal, iChosenLSOpt, iT1, iT3, and iFMOverride { is trivial.
In each case, the estimated value of the monitored variable is simply the value
of the corresponding input variable, i.e., mT1 = iT1, mT3 = iT3, etc.

Obtaining estimates of the values of monitored variables mWallLights and
mWindowLights from the values of the corresponding input variables iSLLWall
and iSLLWindow is also straightforward. The condition table in Figure 21 states
that the wall lights, represented by mWallLights, are on if iSLLWall is true
and o� if iSLLWall is false. A similar condition table de�nes the value of
mWindowLights as a function of the input variable iSLLWindow.

Obtaining the estimated value of the monitored quantity mOccupied is more
complex and may be done in many ways. One way is to set mOccupied = iMD;
that is, the estimate is that the room is occupied i� the output of the motion
detector is true. However, if a room is occupied but there is insu�cient motion
to trigger the motion detector, iMD will be false, thereby providing an inaccurate
estimate of room occupancy. To better estimate the value of mOccupied, we
use the output of the door contact iDCC in conjunction with the value read by
the motion detector iMD. The event table in Figure 22 states that the value of
mOccupied is true whenever the output of the motion detector (i.e., the input
variable iMD) becomes true. When iMD becomes false, mOccupied remains true
if the door has been fully closed and iMD has been true for a continuous period
of at least a minute (if this is the case, the presence of a motionless person in an
o�ce is highly likely), and is set to false otherwise.

Section 3.4 describes how we estimate the values of the monitored variables
representing the indoor light level, mIndoorLL, and the default light level and
option, mDefLSVal and mDefLSOpt.

3.3.2 Specifying the Relation D OUT

Relation D OUT speci�es how estimates of the controlled quantities are used
to drive the output devices. The variables cWallLL and cWindowLL are used
to control the two clusters of dimmable lights. Each light group has a dimmer
line. The values of the dimmers range between 0% and 100%, where 0% cor-
responds to the associated light group being o� and 100% corresponds to the
lights being fully on. The dimmers are speci�ed as oDimmerWall= cWallLL=50
and oDimmerWindow= cWindowLL=50.

Event oPulseWall0

@T(cWallLights= on) AND NOT iSLLWall0 OR true
@T(cWallLights= off) AND iSLLWall0

@T(iSLLWall) WHEN cWallLights= on OR false
@F(iSLLWall) WHEN cWallLights= off

Figure 23: Event table for computing output oPulseWall

Each light group also has a pulse line. A change in the value of a pulse line
from false to true toggles the status of the corresponding light group, i.e., the
lights will be turned on if they are o� and o� if they are on. The event table in
Figure 23 de�nes the new value of the pulse line for the wall lights, oPulseWall,
as a function of the controlled variable cWallLights and the input variable
iSLLWall.

Because changing oPulseWall to true to turn the wall lights on when they
are already on will actually turn the wall lights o� (and changing oPulseWall
to true to turn the wall lights o� when they are already o� will actually turn the
wall lights on), the wall lights should be turned on by setting oPulseWall to true
only when the wall lights are o� and should be turned o� by setting oPulseWall
to true only when the wall lights are on. To obtain this behavior, we need the
current status of the wall lights (on or o�) to compute the value of oPulseWall.
We obtain this information from the input variable iSLLWall. This violates the
rule described in Section 2.3 stating that only controlled variables should be used
to calculate the values of the output variables. However, because the input device,
the status line, and the output device, the pulse line, are part of the same device
and because any future input device and output device that monitor and control
the on/o� status of the lights are likely to be coupled (and hence changes will
most likely involve all the associated variables), we can communicate output data
from the status line directly to the software that controls the value of the pulse
line without violating the information hiding principle. An event table similar
to that shown in Figure 23 de�nes the value of oPulseWindow as a function of
the controlled variable cWindowLights and the input variable iSLLWindow.

3.4 Handling Hardware Malfunctions and Timing Constraints

Practical systems must be designed to tolerate and report hardware malfunctions
and to satisfy timing constraints. This section illustrates how SCR handles LCS
hardware faults and speci�es LCS timing constraints. This is the last step of our
four-step process.

3.4.1 Hardware Malfunctions

The input variables, iMDmalfunction and iOLSmalfunction, represent malfunc-
tions of the motion detector and the outside light sensor, respectively. Each input
variable is true when the corresponding device fails and false otherwise. When
the motion detector fails, the LCS description [1] states that the o�ce should
be treated as occupied. In our LCS speci�cation, this means that the monitored
variable mOccupied is true. To include this fault tolerant behavior, we replace

Event mOccupied0 Trac.

@T(iMD) OR @T(iMD malfunction) true NF4
@F(iMD) WHEN ((NOT iDCC OR (DUR(iDCC AND iMD) < 1)) false NF4
AND NOT iMD malfunction) OR
@T(DUR(NOT iMD malfunction) � 2)

Figure 24: Event table for mOccupied modi�ed to handle device malfunction

Condition mDefLSVal mDefLSOpt Trac.

NOT iOLSmalfunction iDefLSVal iDefLSOpt -
iOLSmalfunction 10000 both NF2

Figure 25: Fault-tolerant speci�cation of mDefLSVal and mDefLSOpt

Event mIndoorLL0 Trac.

@C(iOLS) WHEN (NOT iOLSmalfunction) RI(iOLS) NF1

Figure 26: Fault-tolerant speci�cation of mIndoorLL

the event table for mOccupied in Figure 22 by the table shown in Figure 24. In
the revised table, mOccupied is set to true if motion is detected or if the motion
detector malfunctions (row 1). It is not allowed to go false as long as the mal-
function persists (rows 2 and 3) and is set to false when there is no malfunction
for a period of two minutes.

A malfunction in the outdoor light sensor a�ects the values of two monitored
variables, mDefLSVal and mDefLSOpt. As shown in Figure 25, when the outdoor
light sensor is functioning properly, the values of these variables are the same
as the values of the corresponding input variables, iDefLSVal and iDefLSOpt.
However, when the sensor malfunctions, the variables are assigned the values
10000 and both. A malfunction in the outdoor light sensor also a�ects the esti-
mate of the monitored variable mIndoorLL, which records the indoor light level.
When the outdoor light sensor is working, the indoor light level is speci�ed as
a function RI of the outdoor light level. (This function is not de�ned here; we
assume that such a function would be de�ned with the aid of domain experts.)
When the sensor malfunctions, the value of the indoor light level is the last value
that was read when the sensor was working. Figure 26 provides an event table
for computing an estimate of the indoor light level.

According to the LCS description [1], the LCS must turn on a light on the
Facility Manager's control panel when the motion detector malfunctions. To
support this behavior in a manner that satis�es information hiding, we de�ne
a new boolean monitored variable mMDmalfunction, which has the value true
i� the input variable iMDmalfunction is true, and a new controlled variable
cMDmalfcnLight, which has type yMalfcnLight, where yMalfcnLight is an
enumerated type with values red and green. Then, cMDmalfcnLight has the
value red if mMDmalfunction is true and the value green otherwise. The output
variable oMDmalfunction is de�ned by the condition table in Figure 27 as a func-
tion of cMDmalfcnLight. We use the same approach to create a new monitored

Condition oMDmalfunction

cMDmalfcnLight= red true
cMDmalfcnLight= green false

Figure 27: Noti�cation of motion detector malfunction

Event oCSAWall0

@T(DUR(NOT oCSAWall) � 30) true
@T(DUR(oCSAWall) � 30) false

Figure 28: Event table de�ning signal oCSAWall for wall lights

variable mOLSmalfunction and a new controlled variable cOLSmalfcnLight and
to de�ne mOLSmalfunction, cOLSmalfcnLight, and oOLSmalfunction.

Figure 28 contains an event table that de�nes oCSAWall. (In this table, the
unit of time is seconds and not minutes as in the other tables. Hence, conversion
of minutes to seconds is required when this function is used in conjunction with
the other functions in the LCS speci�cation.) The �rst row of the table states
that oCSAWall is set to true when it has remained false for 30 seconds; the
second row states that oCSAWall is set to false when it has remained true for 30
seconds. This ensures that every 60 seconds the control system sends a signal,
i.e., a transition from false to true, to the wall light cluster. A similar table
de�nes the output variable oCSAWindow.

Adding the fault-tolerant behavior illustrates how the relation REQ speci�ed

as part of the SRS di�ers from the gREQ speci�ed at the level of the SoRS.
When we specify the ideal system behavior, there are no hardware failures or
malfunctions, so noti�cation of any malfunction is absent. In contrast, in the real
system, hardware may fail. At times, the system will be fault-tolerant and hide
malfunctions from users. In other cases, the system must notify the user about
a hardware malfunction so that corrective action can be taken. We describe
information about hardware malfunctions that are visible externally in gREQ.

Extending the LCS speci�cation to handle noti�cation of hardware malfunc-
tions required four more variables: two monitored variables mMDmalfunction and
mOLSmalfunction and two controlled variables cMDmalfcnLight and cOLSmal-
fcnLight. Once these variables are added, the LCS speci�cation contains a to-
tal of 45 variables: six controlled variables, 13 monitored variables, one mode
class, four terms, 14 input variables, and six output variables together with the
distinguished variable time. The relationship between these variables is shown
in the dependency graph in Figure 29. (Because the variable names become un-
readable, we have omitted them from the graph.) This graph, created by the
dependency graph browser in the SCR* toolset, illustrates the complexity of the
LCS speci�cation. In the graph, the leftmost nodes represent input variables and
the rightmost nodes represent output variables. As required, the nodes represent-
ing input variables are only connected to nodes representing monitored variables
and the nodes representing output variables are only connected to nodes repre-
senting controlled variables. The only exceptions are the two nodes in the top
right-hand corner of Figure 29 representing the output variables oPulseWall
and oPulseWindow. As stated in Section 3.3, each of these output variables de-
pends on both a controlled variable and an input variable. The output variables

Figure 29: Dependency Graph for Requirements Speci�cation of LCS

oCSAWall and oCSAWindow do not appear in the graph shown in Figure 29, be-
cause they only depend on time and thus can be considered independently in
another much simpler speci�cation.

3.4.2 Timing Constraints

In addition to tolerating and reporting hardware failures, the LCS must also
satisfy a number of timing constraints. As noted above, we assume that a tim-
ing constraint may be associated with every controlled variable. In our four-step
process, �rst, a system requirements speci�cation is constructed that omits tim-
ing. Once the developers have signi�cant con�dence in the untimed speci�cation,
then they may attach timing constraints to each controlled variable. To illustrate
how our approach associates timing constraints with controlled variables, we add
a timing constraint to the condition table describing the values of the controlled
variables cWallLL and cWindowLL. Figure 30 indicates that the light level must
be updated no later than 10 seconds after the monitored variable change that
triggered the light level update. That is, if the user changed the light level of
the chosen light scene from 3000 lux to 4000 lux at time t, then the wall lights
and window lights must be set to the new light level within t + 10 seconds. In
Figure 30, the constraint is represented as [0; 10], where 0 is the lower bound and
10 is the upper bound. This timing constraint is described in seconds. Given that
most other times in the speci�cation are described in minutes, unit conversion
from minutes to seconds will be needed in simulation and in reasoning about the
system timing behavior.

Condition cWallLL cWindowLL

tCurrentLSOpt = both tRemLL/2 tRemLL/2
tCurrentLSOpt = wall AND 5000 tRemLL � 5000
tRemLL > 5000

tCurrentLSOpt = wall AND tRemLL 0
tRemLL � 5000

tCurrentLSOpt = window AND tRemLL � 5000 5000
tRemLL > 5000

tCurrentLSOpt = window AND 0 tRemLL
tRemLL � 5000

Timing constraint [0; 10] sec. [0; 10] sec.

Figure 30: Table for cWallLL and cWindowLL with timing constraint

Event mOccupied0

@T(iMD) true
@F(iMD) WHEN (NOT iDCC OR (DUR(iDCC and iMD) < 1)) false

Timing constraint [0:0; 0:1] sec

Figure 31: Event table for mOccupied with timing constraint

In addition to associating a timing constraint with each controlled variable,
we also associate timing constraints with each table that de�nes the estimate of
a monitored variable or the value of an output variable. For example, Figure 31
states that the estimate of the monitored variable mOccupied must be updated
within 0.1 seconds after the room became occupied; i.e., if the room became
occupied at time t, then the estimate must be computed within t+0:1 seconds.
The triggering time t is the time that the change in the monitored quantity
actually occurred, not the time that the motion detector detected motion or the
time that the software sampled the values of the motion detector and the door
closed contact.

In a similar fashion, timing constraints can be added to tables which use the
values of controlled variables to compute the output variables. By considering
the times needed to compute estimates of the monitored variables from the
input variables, the times needed to write the values of the controlled variables
to output devices, and the timing constraints associated with the controlled
variables, one can deduce the amount of time the system has available to compute
the values of the controlled quantities. One can thus determine the feasibility of
constructing a system that satis�es the end-to-end timing requirements.

4 Applying the SCR* Toolset

We used the speci�cation editor to develop the SCR speci�cation of the required
behavior of the LCS and three analysis tools in the SCR* toolset to check the
speci�cation for desired properties. These tools were the consistency checker, the
simulator, and a new analysis tool called Salsa [6]. Salsa analyzes a speci�cation
for desired properties using an algorithm based on Binary Decision Diagrams
(BDDs) and a linear integer constraint solver. We performed the analysis in two
stages. First, we used the tools to analyze the SRS, i.e., the speci�cation pre-
sented in Section 3.1. Once we had con�dence in the quality of this speci�cation,

we used the speci�cation editor to add the re�nements and extensions presented
in Sections 3.2-3.4 to the SRS and again applied our analysis tools.

We used our automated consistency checker [11] to check for syntax and
type errors, missing cases, nondeterminism, and other application-independent
properties. Applying the consistency checker exposed some minor errors, such
as incorrect variable names. Applying the tool Salsa was useful for consistency
checking and in addition helped to verify application properties. Salsa detected
an instance of nondeterminism in the de�nitions of variables oPulseWall and
oPulseWindow, which we subsequently corrected in the �nal version of the spec-
i�cation. Later, we used the simulator of the SCR* toolset [10] to symbolically
execute the requirements speci�cation to ensure that the formal speci�cation
correctly captures the customers' intent. Running scenarios through the simula-
tor exposed aws in the de�nitions of the controlled variables cWallLights and
cWindowLights, which we corrected in the �nal version of the speci�cation.

We also formulated the following three application properties:

P1 When mFMOverride is set to true when an o�ce is unoccupied or temporarily
empty, (i.e, mcStatus is not occupied), then cWindowLL and cWallLL are
both set to zero.

P2 When mcStatus is unoccupied, then cWindowLL and cWallLL are both zero.
P3 If mcStatus is unoccupied, then cWallLights and cWindowLights are o�.

All three properties were veri�ed formally using the tool Salsa on an early version
of the SRS. However, after we rede�ned the controlled variables cWallLights
and cWindowLights, Property P3 proved to be false. The problem is that nothing
is assumed in the speci�cation about the ability of users to switch the wall
(or window) lights on when an o�ce is unoccupied (mStatus= unoccupied).
One way to prove this property is to include in NAT an assumption that light
groups cannot be turned on unless the o�ce is occupied (mStatus= occupied).
However, this assumption may be incorrect if it is possible to operate the user
control panel, which is portable, from outside the o�ce.

Analyzing the LCS speci�cation with our tools increased our con�dence in
the correctness of the speci�cation. Further analysis would give us even more
con�dence. One bene�t of the three tools that we used to analyze the LCS spec-
i�cation is that applying these tools is relatively easy. Two other tools associated
with the SCR* toolset could also be used but applying them would require more
e�ort. These tools are the model checker Spin [14] and the TAME tool [4], an in-
terface to the theorem prover PVS. Because the LCS speci�cation contains many
numbers and large ranges of numbers (e.g., the light level can vary between 0
and 10,000), its state space is very large. Hence, a barrier to using a model
checker is the state explosion problem. Running TAME requires the ability to
do deductive reasoning and some knowledge of PVS. Another problem is that
the LCS description does not list a set of application properties that the LCS
speci�cation must satisfy. Hence, we would need to formulate a set of properties.

5 Discussion

The development of the LCS requirements speci�cation using SCR raised a num-
ber of issues. Below, we discuss these issues and describe how each was resolved.

5.1 Managing Complexity

The LCS is a relatively complex system. Specifying just the behavior of the sys-
tem that controls the lighting in a single o�ce required signi�cant e�ort and re-
sulted in the moderately large speci�cation presented in Section 3. A systematic
way to specify and to organize the LCS requirements was therefore crucial. The
four-step process that we applied appears to be e�ective for handling require-
ments speci�cations of moderate to high complexity. However, more experience
is needed in applying the process to practical systems before we can conclude
that the process is useful.

5.2 Focusing on the Essential Behavior

Specifying the ideal system behavior in step 1 of our process focuses attention
on the essence of the required system behavior and postpones consideration
of the more detailed requirements, e.g., the selected input and output devices,
the system's timing requirements, how to represent fault-tolerance, and how to
specify and report hardware malfunctions. In specifying the ideal behavior of
the LCS �rst, we are also forced to clarify the required system behavior. For
example, for the ideal system behavior, we want to know whether an o�ce is
occupied, not whether motion has been detected in the o�ce or whether a motion
detector has failed.

The speci�cation of the ideal behavior should not be inuenced by the partic-
ular input and output devices that have been selected. For example, our initial
speci�cation of the controlled variables cWallLights and cWindowLights was
inuenced by the special characteristics of the pulse line, the output that turns
the lights on and o�. Once aware of this bias, we respeci�ed the required behav-
ior in a manner that omits bias toward the selection of a particular hardware
device.

5.3 System and Environmental Control of a Variable

De�ning a variable that is controlled both by the system and by the environment
required careful thought. To represent the on/o� status of each lighting group,
we de�ned both a monitored variable { to keep track of when the environment
turned the lights on and o� { and a controlled variable { to indicate when the
system needs to turn the lights on or o�. Maintaining the consistency of the two
variables also required careful thought.

The de�nition of cWallLights presented in Figure 4 and the NAT assump-
tion described in Section 3.1.2 are designed to solve these problems. The speci�-
cation in Figure 4 turns the lights on or o� in response to speci�ed events. It also
uses the value of the monitored variable mWallLights to ensure that the value
of the controlled variable cWallLights is consistent with the current on/o� sta-
tus of the wall lights when the user turns them on and o� manually. The NAT
assumption described at the end of Section 3.1.2 ensures that the environment
will change mWallLights to the proper value when the system changes the value
of cWallLights in order to turn the lights on or o�.

5.4 The Importance of Tool Support

Applying tools to our LCS speci�cation had three bene�ts. First, a number of
errors in the speci�cation were identi�ed and corrected with only a small invest-
ment in human time and e�ort. Second, several important questions were raised
about the required system behavior and about the underlying assumptions about
the system environment (e.g., where are the light switches located?). Many of
these errors and questions were unlikely to have been identi�ed by inspection.
The LCS is simply too big and too complicated. Finally, running the consis-
tency checker and �nding no problems, running a series of scenarios through
the simulator and �nding that the simulated behavior was consistent with the
expected behavior, and verifying application properties such as P1{P3 increased
our con�dence in the correctness of the speci�cation.

5.5 Organizing the Requirements

An issue is how the three products described in Section 3 { the SRS, the SDS,
and the SoRS { are organized into requirements documents. In our view, the in-
formation provided could be presented as a single document or as three separate
documents. Probably more important is that these speci�cations can be orga-
nized as a database from which many di�erent documents could be generated.
Further, users could �nd answers to queries using the database when they want
to know how the speci�cation addresses particular questions about the required
behavior of the LCS.

5.6 Redundancy in the Speci�cation

One important question is why the software is required to copy the value of an in-
put variable to the corresponding monitored variable and the value of a computed
controlled variable to an output variable. For example, why not use the value
of the input variable iChosenLSVal rather than the value of the corresponding
monitored variable mChosenLSVal to compute the term tCurrentLSVal (see Fig-
ure 12)? One reason has been already stated: Hiding the identity of the speci�c
I/O devices that the system uses from the software that computes the values of
the controlled variables leads to software that is organized for ease of change.
The other reason is ease of development. We can specify REQ �rst and then
re�ne the speci�cation by adding the speci�cations of D IN and D OUT later.
Adding the speci�cation of D IN and D OUT in this manner will not change the
speci�cation of REQ.

5.7 Requirements Not Addressed

The requirements speci�cation in this paper addresses all of the user, facility
manager, and non-functional needs (including fault tolerance and user interface
requirements), with the following exceptions:

1. The o�ce control panel does not include lights to indicate failure of the
outdoor light sensor and the motion detector. These lights are added trivially,
since their behavior is analogous to the behavior of the corresponding lights
on the Facilities Manager control panel.

2. We made no attempt to address the facility manager need FM9, since this
need cannot be reasonably met without employing an energy meter.

3. Our speci�cation does not address the facility manager need FM11, i.e.,
provide the ability to the facility manager to enter malfunctions manually.
Adding this capability to the speci�cation is straightforward, and we leave
this as an exercise to the reader.

6 Related Work

The process described above for constructing a requirements speci�cation was
signi�cantly inuenced by Parnas' Four Variable Model [19] but di�ers in two
fundamental ways. First, the Parnas model uses the IN and OUT relations to
represent the required tolerances, i.e., the precision with which the input devices
must measure the values of the monitored quantities and the output variables
must assign values to the controlled quantities. Although such information would
be useful, the speci�cation described in Section 3 provides no information (except
some minimal timing constraints) about the required tolerances. Instead, we
use the D IN and D OUT relations to describe how the software is required to
transform data from the input devices into estimates of the monitored quantities
and to write estimates of the controlled quantities to the output devices. Just
as we use tables to represent the REQ relation, we also use tables to represent
the D IN and D OUT relations.

Second, whereas in the Parnas model, the relation SOFT, which describes
the required software behavior, is derived from the REQ, NAT, IN, and OUT
relations, we specify the required behavior in terms of the relations NAT, D IN,

D OUT, and gREQ. As described above, we decompose the system software into
three modules, the device-independent module and the two device-dependent
modules, and formally specify the required behavior of each module. The D IN
and D OUT relations de�ne the required behavior of the device-dependent mod-

ules. The relation gREQ de�nes the required behavior of the device-independent

module. As noted above, gREQ contains more information than REQ because,gREQ describes the required system response to hardware malfunctions and has
as inputs the estimated values of the monitored variables rather than the exact
values of the monitored variables.

An approach similar to ours, also inuenced by the Four Variable Model,
has been developed by Thompson, Heimdahl, and Miller [21] in the context of
simulation. As in our approach, the required system behavior is initially speci�ed
as a relation between monitored and controlled variables. Then, the speci�cation
is re�ned by using input devices to estimate values of the monitored quantities
and by writing values of the controlled variables to output devices. Thompson
et al. refer to the inverses, IN�1 and OUT�1, of the IN and OUT relations
of the Parnas model, but their relations are similar to our relations D IN and
D OUT and do not describe tolerances. A more fundamental di�erence between
our approach and that of Thompson et al. is that the explicit application of
information hiding is missing from their approach. Moreover, Thompson et al.
appear to consider the externally visible behavior about hardware malfunctions
(e.g., that the value of a monitored variable is unavailable) at the same time
that the ideal system behavior is considered, and they do not associate timing
constraints with the controlled variables.

7 Conclusions and Future Work

This paper has demonstrated how the SCR method may be used to specify

the required behavior of the LCS in terms of four relations: NAT, gREQ, D IN,
and D OUT. Just as for system requirements speci�cations, the available veri-
�cation and validation features of the SCR toolset (e.g., consistency checking,
simulation, and property checking using Salsa) were used to verify that the rela-
tions D IN and D OUT are well-formed and that they satisfy critical properties.
The utility of analyzing the LCS speci�cation for desired properties using ei-
ther model checking or theorem proving is still an open question given the high
overhead usually associated with these techniques. However, we are developing
approaches that reduce this overhead by using automatic abstraction methods
to limit state explosion in model checking [5, 9] and by using the automatic
generation of invariants [15] and more automatic, more natural theorem proving
methods [3, 4, 16] to facilitate the use of mechanical theorem provers.

Our application of the SCR simulator to the LCS speci�cation proved to be
especially valuable. Once the speci�cation was entered into the SCR toolset, a
user could run scenarios through the simulator to validate that the speci�cation
captures the intended behavior. However, the initial simulator has an interface
generic to all SCR speci�cations. Developing a customized front-end for the LCS
simulator based on Figures 16{17 would require only one or two days of work.
The existence of a customized LCS simulator will allow us to demonstrate the
system behavior captured in the requirements speci�cation to customers, domain
experts, and user interface design experts and thus provide an easy way to obtain
both user and expert feedback.

Our new research is in automatic code generation from requirements speci-
�cations and mechanized analysis of timed speci�cations. The code generation
facility that we are developing may be used eventually to automatically con-
struct code for both the device-dependent and the device-independent software
modules. What also remains is to verify the end-to-end system timing behavior,
i.e., to verify that the timing constraints speci�ed in the system requirements
speci�cation are feasible. Developing tool support for this is a current focus of
our research.

Acknowledgments

This work is funded by the O�ce of Naval Research. Our extension of SCR to the
speci�cation and analysis of software requirements bene�ted from discussions at
the Dagstuhl Seminar on Requirements Capture, Documentation and Validation
in June 1999. We especially acknowledge the helpful comments of Dave Parnas
during the seminar. We also acknowledge useful discussions with our colleague
Jim Kirby, who suggested that we organize the requirements information as a
database. Finally, we thank Myla Archer, Ralph Je�ords, Jim Kirby, and the
anonymous referees for helpful comments on earlier drafts of this paper.

References

[1] The light control case study: Problem description. Journal of Universal Computer
Science, Special Issue on Requirements Engineering (This Volume).

[2] T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker, D. L. Parnas, and J. E.
Shore. Software requirements for the A-7E aircraft. Technical Report NRL-9194,
Naval Research Lab., Wash., DC, 1992.

[3] M. Archer and C. Heitmeyer. Mechanical veri�cation of timed automata: A
case study. In Proc. 1996 IEEE Real-Time Technology and Applications Symp.
(RTAS'96), pages 192{203. IEEE Computer Society Press, 1996.

[4] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS interface to simplify proofs
for automata models. In Proc. User Interfaces for Theorem Provers, Eindhoven,
Netherlands, July 1998. Eindhoven Univ. of Technology.

[5] R. Bharadwaj and C. Heitmeyer. Model checking complete requirements speci�-
cations using abstraction. Automated Software Engineering, 6(1), January 1999.

[6] R. Bharadwaj and S. Sims. Salsa: Combining constraint solvers with BDDs for
automatic invariant checking. In Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS '2000), Berlin, March 2000.

[7] S. Easterbrook and J. Callahan. Formal methods for veri�cation and validation of
partial speci�cations: A case study. Journal of Systems and Software, 1997.

[8] S. R. Faulk, J. Brackett, P. Ward, and J. Kirby, Jr. The CoRE method for real-
time requirements. IEEE Software, 9(5):22{33, September 1992.

[9] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using abstrac-
tion and model checking to detect safety violations in requirements speci�cations.
IEEE Trans. on Softw. Eng., 24(11), November 1998.

[10] C. Heitmeyer, J. Kirby, Jr., B. Labaw, and R. Bharadwaj. SCR*: A toolset for
specifying and analyzing software requirements. In Proc. Computer-Aided Veri�-
cation, 10th Annual Conf. (CAV'98), Vancouver, CAN, 1998.

[11] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Automated consistency check-
ing of requirements speci�cations. ACM Transactions on Software Engineering
and Methodology, 5(3):231{261, April{June 1996.

[12] K. Heninger, D. L. Parnas, J. E. Shore, and J. W. Kallander. Software require-
ments for the A-7E aircraft. Technical Report 3876, Naval Research Lab., Wash.,
DC, 1978.

[13] K. L. Heninger. Specifying software requirements for complex systems: New tech-
niques and their application. IEEE Trans. Softw. Eng., SE-6(1):2{13, January
1980.

[14] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software En-
gineering, 23(5):279{295, May 1997.

[15] R. Je�ords and C. Heitmeyer. Automatic generation of state invariants from re-
quirements speci�cations. In Proc. Sixth ACM SIGSOFT Symp. on Foundations
of Software Engineering, November 1998.

[16] J. Kirby, Jr., M. Archer, and C. Heitmeyer. SCR: A practical approach to build-
ing a high assurance COMSEC system. In Proc. 15th Annual Computer Security
Applications Conf. (ACSAC '99). IEEE Computer Society Press, December 1999.

[17] S. Miller. Specifying the mode logic of a ight guidance system in CoRE and SCR.
In Proc. 2nd ACM Workshop on Formal Methods in Software Practice, 1998.

[18] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053{1058, 1972.

[19] D. L. Parnas and J. Madey. Functional documentation for computer systems.
Science of Computer Programming, 25(1):41{61, October 1995.

[20] D.L. Parnas, P.C. Clements, and D.M. Weiss. The modular structure of complex
systems. IEEE Trans. Softw. Eng., SE-11(3):259{266, March 1985.

[21] J. M. Thompson, M.P.E. Heimdahl, and S. P. Miller. Speci�cation-based proto-
typing for embedded systems. In Proc. 7th ESEC/FSE, September 1999.

